Correct option is : (4) \(32 / 27\)
\(R=\frac{\rho \ell}{A}\)
So, \(\mathrm{R} \ \alpha \ \ell\)
Side length of triangle is \(1 / 3\) of total length.
\(\left(R_{e q}\right)_{1}=\frac{2 r / 3 \times r / 3}{2 r / 3+r / 3} \quad\left(R_{e q}\right)_{2}=\frac{3 r / 4 \times r / 4}{3 r / 4+r / 4}\)
\( \left(R_{\text {eq }}\right)_{1}=2 r / 9\quad \left(\mathrm{R}_{\mathrm{eq}}\right)_{2}=3 \mathrm{r} / 16\)
\(\frac{\left(\mathrm{R}_{\mathrm{eq}}\right)_{1}}{\left(\mathrm{R}_{\mathrm{eq}}\right)_{2}}=\frac{2 \mathrm{r} / 9}{3 \mathrm{r} / 16}=\frac{32}{27}\)