Answer is: 54
Maxima condition
\(2 \mu \mathrm{t}=\mathrm{n} \lambda \Rightarrow \mathrm{t}=\frac{\mathrm{n} \lambda}{2 \mu} \Rightarrow \mathrm{t}=\frac{\lambda}{2 \mu}, \frac{2 \lambda}{2 \mu}, \ldots \ldots\)
Minima condition \(2 \mu \mathrm{t}=(2 \mathrm{n}-1) \lambda / 2\)
\(\Rightarrow \mathrm{t}=\frac{(2 \mathrm{n}-1) \lambda}{4 \mu} \Rightarrow \mathrm{t}=\frac{\lambda}{4 \mu}, \frac{3 \lambda}{4 \mu}, \ldots \ldots\)
\(\Delta t=\frac{2 \lambda}{4 \mu}\)
Rate of evaporation \(=\frac{\mathrm{A}(\Delta \mathrm{t})}{\text { time }}=54 \times 10^{-13} \mathrm{~m}^{3} / \mathrm{s}\)