Correct option is : (B) 16 : 25
Given:-
Ratio of Volume of two Spheres = 64 : 125
\(\frac{V_1}{V_2}=\frac{\frac{4}{3} \pi r_1^3}{\frac{4}{3} \pi r_2^3} \)
\( \frac{64}{125}=\left(\frac{r_1}{r_2}\right)^3 \)
\(\frac{r_1}{r_2}=\sqrt[3]{\frac{64}{125}}=\frac{4}{5}\)
\(\therefore\) Ratio of their Surface areas \(=\frac{S_1}{S_2}\)
\(=\frac{4 \pi r_1^2}{4 \pi r_2^2} \)
\(=\left(\frac{r_1}{r_2}\right)^2 \)
\( =\left(\frac{4}{5}\right)^2 \)
\(=\frac{16}{25}\)