Correct option is (A) 0
\(I =\int\limits_{-1}^1 \sin ^{13} x \cos ^{12} x \ dx \)
The integrand \(f(x) = \sin^{13} (x) \cos ^{12} (x)\) is an odd function because
\(f(-x) = (-\sin (x))^{13} (\cos (-x))^{12} = - f(x)\)
The integral of an odd function over a symmetric limit (-1, 1) is always zero.
\(\therefore \int\limits_{-1}^1 \sin ^{13} x \cos ^{12} x \ dx = 0\)