सही विकल्प है: (D) 1 : 2
According to the Section formula, if a point P(x, y) that lies on a line Segment AB joining points \(A(x_{1}, y_{1})\) and \(B(x_{2}, y_{2})\) divides the line in the ratio m : n, then the Coordinates can be.
Coordinates = (x, y) = \(\left(\frac{mx_2+nx_1}{m+n}, \frac{my_2+ny_1}{m+n}\right)\).
Let the point P(x, 0) divide the segment joining A(- 4, 5) and B(0, - 10) in the ratio m : n, then
(x, 0) = \(\left(\frac{m \times 0 +n(-4)}{m+n}, \frac{m(-10)+n(5)}{m+n}\right)\)
0 = \(\frac{-10m+5n}{m+n}\)
-10m + 5n = 0
-10m = -5n
\(\frac{m}{n} = \frac{5}{10}\)
\(\frac{m}{n} = \frac{1}{2}\)
m : n = 1 : 2