
We know
\(PQ^2 + PR^2 = QR^2\) (Pythagoras theorem)
\((x+2)^2 + (y+3)^2 + (x-2)^2+(y-3)^2=(-2-2)^2 + (-3-3)^2\)
\(x^2 +4+4x+y^2+9+6y+x^2+4-4x+y^2+9-6y=16+36\)
\(2(x^2 +y^2) +2(4+9) +52\)
\(x^2+y^2+13=26\)
\(x^2+y^2=13\) (Required relation)
For y = 2, \(x^2=13-2^2=9\)
\(x\pm3\)
\(\therefore\) Possible values of x when y = 2 are –3, 3.