P(x) = 3x2+x-10
3x2+x-10 = 3x2+6x-5x-10
= 3x(x+2) - 5 (x+2)
= (3x-5)(x+2)
3x-5 = 0 or x+2 = 0
\(\therefore\) \(x = \frac{5}{3}\) and x = -2
Therefore, zeroes of 3x2 + x – 10 are –2 and \(\frac{5}{3}\)
Verification :
Sum of zeroes \(= -2+\frac{5}{3} = \frac{-6+5}{3} = \frac{-1}{3} = - \frac{-(coeff.\space of\space x)}{coeff.\space of\space x^2}\)
Product of zeroes \(= (-2) × \left( \frac{5}{3}\right) = - \frac{10}{3} = \frac{Constant \space term}{coeff.\space of \space x^2}\)
Hence verified