SI on ₹ x at 6% p.a for 1 year
\( = \frac{₹(x\times 6\times1)}{100}\)
\(= \ \frac{₹6x}{100} = \frac{₹3x}{50}\)
SI on ₹y at 5% p.a. for 1 year
\(= \frac{₹(y\times5\times1)}{100}\)
\(= \frac{₹5y}{100} = \frac{₹1}{20} y\)
Total SI = ₹1200
\(\frac{3x}{50} + \frac{y}{20} = 1200\)
⇒ \(\frac{6x+5y}{100} = 1200\)
⇒ 6x + 5y = 120000 …(1)
SI on ₹x at 3% p.a. \(= ₹ \frac{(x\times3\times 1)}{100}\)
\(= ₹ \frac{3x}{100}\)
S.I. on ₹ y at 8% p.a \(= \frac{₹(y\times8\times1)}{100} = ₹ \frac{2}{25} y\)
\(\frac{3x}{100} + \frac{2y}{25} = 1260\)
⇒ \(\frac{3x+8y}{100} = 1260\)
⇒ 3x + 8y = 126000 …(ii)
Multiply equation (ii) by 2 and then subtract it from equation (i)
