Since there is no slack in the string, strings can be taken as straight lines with direction as given vectors. The angles between two vectors v1 and v2 is given by \(\frac{\vec{V_1} \cdot \vec{V_2}}{|\vec{V_1}||\vec{V_2}|} = cos \theta\)
⇒ cosine of Angle between \(\vec{a}\) and \(\vec{b}\)will be \(\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}\)
\(|\vec{a}| = \sqrt{{3}^2 +{1}^2+{2}^2} = \sqrt{9+1+4} = \sqrt14\)
\(|\vec{b}| = \sqrt{{2}^2+(-2)^2+{4}^2} = \sqrt{4+4+16} =\sqrt24\)
\(\vec{a} \cdot \vec{b} = (3\hat{i}+\hat{j}+2\hat{k}) \cdot (2\hat{i}-2\hat{j}+4\hat{k}) = 2 \times 3+(1)(-2)+(2)(4)\)
= 6 - 2 + 8 = 12
\(cos\theta = \frac{12}{\sqrt{14}\sqrt{24}} = \sqrt{\frac{144}{24 \times 14}} = \sqrt{\frac{3}{7}}\)
⇒ \(\theta = cos^{-1}(\sqrt{\frac{3}{7}})\)
