Two vectors \(\vec{a} = a_1\hat{i}+ a_2\hat{j}+a_3\hat{k}\) and \(\vec{b} = b_1\hat{i} +b_2\hat{j}+b_3\hat{k}\)
are collinear if
(a) a1b1 + a2b2 + a3b3 = 0
(b) \(\frac{a_1 }{b_1} = \frac{a_2}{b_2} = \frac{a_3}{b_3}\)
(c) a1 = b1, a2 = b2, a3 = b3
(d) a1 + a2 + a3 = b1 + b2 + b3