(I) Based on the information given, we substitute y = vx in the equation (x2 – y2 ) dx + 2xy dy = 0
i.e., \(\frac{dy}{dx} = \frac{y^2-x^2}{2xy}\left(\text{as y= vx} \Rightarrow \frac{dy}{dx} = \text{v+x}\frac{dv}{dx} \right)\)
\(\Rightarrow \text {v+x}\frac{dv}{dx} = \frac{(V^2-1)x^2}{2\text{v}\text{x}^2}\)
\(\Rightarrow x \frac{dv}{dx} = \frac{(\text{v}^2-1- 2\text{v}^2)}{2\text{v}}\)
\(\Rightarrow \frac{2\text{v}\ dv}{1+\text{v}^2}+ \frac{dx}{x} = 0 \ \ \text{...(i)}\)
\(\therefore\) The above equation, on substituting y = vx is reduced to a variable separable hence given equation is a differential equation of type
\(\frac{dy}{dx} = \text{g}\left(\frac{y}{x}\right)\)
(II) Solving (i) further, we ge
\(\int \frac{\text{2v}\ dv}{1+\text{v}^2}+\int \frac{dx}{x} = 0\)
\(\Rightarrow \text{In} (1+\text{v}^2)+ \text{In x = Inc} \)
\(\Rightarrow \text{x} \left(1+\left(\frac{y}{x}\right)^2\right) = \text{c}\)
\(\Rightarrow \text {x}^2 + \text{y}^2 - \text {cx} = 0\)