Correct option is: (4) \(\frac{2}{3}(20 \sqrt{2}-24)\)

Shaded region is the required area.
Area \(=\int_\limits{0}^{2}(-\sqrt{4-y}+\sqrt{4+y}) d y+\int_\limits{2}^{4}(-\sqrt{y}+\sqrt{4+y}) d y\)
\(\left.\left.=\frac{2(4+y)^{3 / 2}}{3}+\frac{2(4-y)^{3 / 2}}{3}\right]_{0}^{2}+\frac{2(4+y)^{3 / 2}}{3}-\frac{2 y^{3 / 2}}{3}\right]_{0}^{4}\)
\(=\frac{2}{3}\left[\left(6^{3 / 2}+2^{3 / 2}\right)-(8+8)+\left(8^{3 / 2}-8\right)-\left(6^{3 / 2}-2^{3 / 2}\right]\right.\)
\(=\frac{2}{3}\left[2^{3 / 2}-16+8^{3 / 2}-8+2^{3 / 2}\right]\)
\(=\frac{2}{3}[4 \sqrt{2}+16 \sqrt{2}-24]\)
\(=\frac{2}{3}[20 \sqrt{2}-24]\) sq. unit