Correct option is: (1) \(\frac{22}{3}\)
\(p\left(B_{1} / R\right)=\frac{p\left(B_{1}\right) \cdot p\left(R / B_{1}\right)}{p(R)}\)
\(=\frac{\frac{1}{3} \times \frac{3}{10}}{\frac{1}{3} \times \frac{3}{10}+\frac{1}{3} \times \frac{4}{10}+\frac{1}{3} \times \frac{5}{10}}=\frac{1}{4}=p\)
\(p\left(B_{3} / G\right)=\frac{p\left(B_{3}\right) \cdot p\left(G / B_{3}\right)}{p(G)}\)
\(=\frac{\frac{1}{3} \times \frac{3}{10}}{\frac{1}{3} \times \frac{3}{10}+\frac{1}{3} \times \frac{3}{10}+\frac{1}{3} \times \frac{4}{10}}=\frac{3}{10}=q\)
\(\frac{1}{p}+\frac{1}{q}=4+\frac{10}{3}=\frac{22}{3}\)