Let \(f(x)\) and g(x) satisfies the functional equation \(2 g(x)+3 g\left(\frac{1}{x}\right)=x\) and \(2 f(x)+3 f\left(\frac{1}{x}\right)=x^{2}+5.\)
If \(\alpha=\int_\limits{1}^{2} f(x) d x\) and \(\beta=\int_\limits{1}^{2} g(x) d x\) then \((9 \alpha+\beta)\) is equal to
(1) \(\frac{27+6 \ln _{2}}{10}\)
(2) \(\frac{27-6 \ln _{2}}{10}\)
(3) \(\frac{3}{5} \ln _{2}\)
(4) \(\frac{3}{5} \ln _{2}+\frac{7}{30}\)