Correct option is: (3) \(\frac{7 \sqrt{3}}{2}\)
P(5, 1, -3)
\(L_{1}: x-1=y-2=z=\lambda\)
\(L_{2}: x-2=y=z-1=\mu\)
Any point of \(L_{1}\) is \(Q(\lambda+1, \lambda+2, \lambda)\)
Any point of \(L_{2}\ \text{is}\ R(\mu+2, \mu, \mu+1)\)
Now \(P Q<\lambda-4, \lambda+1, \lambda+3\rangle \cdot\langle 1,1,1\rangle=0\)
\(\lambda-4+\lambda+1+\lambda+3=0\)
\(3 \lambda=0\)
\(\Rightarrow \lambda=0\)
\(\therefore\ Q(1,2,0)\)
