Use app×
Join Bloom Tuition
One on One Online Tuition
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
26 views
in Mathematics by (43.8k points)

Number of solution(s) of the equation

\((\cos 2 \theta) \cdot\left(\cos \frac{\theta}{2}\right)+\cos \frac{5 \theta}{2}=2 \cos ^{3}\left(\frac{5 \theta}{2}\right)\) in \(\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\) is equal to

(1) 6

(2) 7

(3) 4

(4) 2  

Please log in or register to answer this question.

1 Answer

0 votes
by (43.4k points)

Correct option is: (2) 7

\(2(\cos 2 \theta) \cdot\left(\cos \frac{\theta}{2}\right)+2 \cos \frac{5 \theta}{2}=4 \cos ^{3}\left(\frac{5 \theta}{2}\right)\)

\(\Rightarrow \cos \left(\frac{5 \theta}{2}\right)+\cos \frac{3 \theta}{2}+2 \cos \left(\frac{5 \theta}{2}\right) =\left(\cos \frac{15 \theta}{2}+3 \cos \frac{5 \theta}{2}\right) \)

\(\Rightarrow \cos \left(\frac{3 \theta}{2}\right)+\cos \left(\frac{15 \theta}{2}\right)\)

\( \Rightarrow \cos \left(\frac{3 \theta}{2}\right)-\cos \frac{15 \theta}{2}=0 \)

\( \Rightarrow 2 \sin \left(\frac{9 \theta}{2}\right) \sin \left(\frac{6 \theta}{2}\right)=0,3 \theta=2 A \pi \)

\( \therefore \frac{9 \theta}{2}=\eta \pi \rightarrow \theta=\frac{2 \eta \pi}{9} \)

\( \Rightarrow \theta=\frac{2 \eta \pi}{3} \)

\(\therefore \theta=-\frac{4 \pi}{9},-\frac{3 \pi}{9},-\frac{2 \pi}{9}, 0, \frac{2 \pi}{9}, \frac{3 \pi}{9}, \frac{4 \pi}{9}\)  

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

...