Given \(I = 14 sin (100 \pi t)A\)
\(R = 30 \ \Omega\)
\(L = \left(\frac{2}{5 \pi}\right) H\)
Thus angular frequency, \(\omega = 100 \pi\)

(i) rms value of voltage drop across resistor = VR
\(\Rightarrow V_R = I_ {rms}R = \left(\frac{14}{\sqrt2}\right) (30) = \frac{14}{1.4} \times 30 = 300 \ V\)
rms value of voltage drop across inductor = VL
\(\Rightarrow V_L = I _{rms} X_L = \frac{14}{\sqrt2}\times \omega L = 10 \times 100 \pi \times \frac{2}{5 \pi}\)
= 400 V
(ii)
\(\text{Power factor } = cos\phi = \frac{R}{\sqrt{R^2+ X_{L}^{2}}}
\)
\(= \frac{30}{\sqrt{30^2+ \left(100 \pi \times \frac{2}{5 \pi}\right)^2}} = \frac{30}{\sqrt{30^2+ 40^2}} = \frac{3}5\)
\(\text{Thus power factor } = \frac{3}{5}\)