(I)
Magnifying power, \(M = \frac{\beta}{\alpha}\)
\(M = \frac{tan \ \beta}{tan \ \alpha}\)
\(= \frac{A'' B ''}{C_2B''} \times \frac{C_2B''}{AB} \ [A_1B''= AB]\)
\(M = m_e \times m_0\)
\(= \left( 1+ \frac{D}{f_e}\right) \times m_0\)
\(\frac{V_0}{-u_0} \left(1+ \frac{D}{f_e}\right)\)
(II)
u0 = –1.5 cm
fo = 1.25 cm
\(\frac{1}{f_0} = \frac{1}{V_0}- \frac{1}{u_0}\)
\(\frac{1}{1.25} = \frac{1}{V_0}+ \frac{1}{1.5}\)
\(\Rightarrow \frac{1}{V_0} = \frac{1}{2.5} - \frac{1}{1.5}\)
\(= \frac{100}{125}- \frac{10}{15}\)
\(= \frac{1500 - 1250}{1875}\)
\(\Rightarrow \frac{1}{V_0} = \frac{250}{1875}\)
\(\Rightarrow V_0 = +7.5 \ cm\)
\(f_e = +5 cm\)
\(m = - \frac{V_0}{u_0} \left[1+ \frac{D}{f_e}\right]\)
\(m = \frac{7.5}{-1.5}\left[1+ \frac{25}{5}\right]\)
\(= \frac{-7.5}{1.5} \times 6\)
\(m = -30\)