Correct option is: (1) 6
\( \operatorname{cosec} \theta=\frac{2(\sqrt{3}-1) \pm \sqrt{4(3+1-2 \sqrt{3})+16 \sqrt{3}}}{2 \sqrt{3}}\)
\(=\frac{2(\sqrt{3-1}) \pm \sqrt{16+8 \sqrt{3}}}{2 \sqrt{3}} \)
\( =\frac{2(\sqrt{3}-1) \pm(2+2 \sqrt{3})}{2 \sqrt{3}}\)
\(\operatorname{cosec} \theta=2\ \text{or}\ \frac{-2}{\sqrt{3}}\)
\(\therefore\ \sin \theta=\frac{1}{2}\ \text{or}\ \frac{-\sqrt{3}}{2}\)
\(\therefore \sin \theta=\frac{1}{2}\) has 3 solutions & also \(\sin \theta=\frac{-\sqrt{3}}{2}\)
has 3 solutions in \(\left[\frac{-7 \pi}{6}, \frac{4 \pi}{3}\right]\)