Correct option is: (4) 20
\(\sum_\limits{\mathrm{r}=0}^{10}\left(\frac{10^{\mathrm{r}-1}-1}{10^{r}}\right)^{11} \mathrm{C}_{\mathrm{r}+1}\)
\(=\sum_\limits{\mathrm{r}=0}^{10}\left(10-\frac{1}{10^{\mathrm{r}}}\right){ }^{11} \mathrm{C}_{\mathrm{r}+1}\)
\(=10 \sum_\limits{\mathrm{r}=0}^{10}{ }^{11} \mathrm{C}_{\mathrm{r}+1}-10 \sum\left({ }^{11} \mathrm{C}_{\mathrm{r}+1}\left(\frac{1}{10}\right)^{\mathrm{r}+1}\right)\)
\(=10\left[{ }^{11} \mathrm{C}_{1}+{ }^{11} \mathrm{C}_{2}+\ldots . .+{ }^{11} \mathrm{C}_{11}\right]\)
\(-10\left[{ }^{11} \mathrm{C}_{1}\left(\frac{1}{10}\right)^{1}+{ }^{11} \mathrm{C}_{2}\left(\frac{1}{10}\right)^{2}+\ldots . .+{ }^{11} \mathrm{C}_{11}\left(\frac{1}{10}\right)^{11}\right]\)
\(=10\left[2^{11}-1\right]-10\left[\left(1+\frac{1}{10}\right)^{11}-1\right]\)
\(=10(2)^{11}-10-\frac{11^{11}}{10^{10}}+10\)
\(=\frac{(20)^{11}-11^{11}}{10^{10}}\)
\(\therefore\ \alpha=20\)