Answer is: 3
\(y=\cos \left(\frac{\pi}{3}+\cos ^{-1} \frac{x}{2}\right) \)
\(=\cos \left(\frac{\pi}{3}\right) \cos \left(\cos ^{-1}\left(\frac{x}{2}\right)\right)-\sin \left(\frac{\pi}{3}\right) \sin \left(\cos ^{-1}\left(\frac{x}{2}\right)\right) \)
\( =\frac{1}{2} \cdot \frac{x}{2}-\frac{\sqrt{3}}{2} \cdot \sqrt{1-\frac{x^2}{4}} \)
\( \Rightarrow 4 y=x-\sqrt{3} \sqrt{4-x^2} \)
\(\Rightarrow(4 y-x)^2=3\left(4-x^2\right) \)
\( \Rightarrow 16 y^2+x^2-8 x y=12-3 x^2 \)
\(x^2+4 y^2-2 x y=3 \)
\((x-y)^2+3 y^2=3\)