Correct option is : (4) \(4 \ m/s\)

Apply Bernouli equation between points 1 \(\&\) 2
\(P_1 + \frac{1}{2} \rho v_1^{2} + \rho gh = p_2 + \frac{1}{2} \rho v_2^{2} + 0\)
\(P_0 + \frac{mg}{A} + \rho g \frac{70}{100} = P_0 + \frac{1}{2} \rho v_2^2\)
\(\frac{5000}{0.5} + 10^3 \times 10 \frac{70}{100} = \frac{1}{2} \times 10 ^3 v_2^2\)
\(10^3 + 10^3 \times 7 = \frac{10^3}{2} v_2^2\)
\(v_2^2 = 16
\)
\(v_2 = 4 \ m/s\)
As the tank area is large \(v_1\) is negligible compared to \(v_2\)