Correct option is: (3) 48
\(\mathrm{f}\left(0^{-}\right)=\mathrm{e}^{\lim _\limits{\mathrm{x} \rightarrow 0} \frac{\mathrm{ax}}{\mathrm{x}}}=\mathrm{e}^{\mathrm{a}}\)
\(\mathrm{f}(0)=1+\mathrm{b}\)
\(\mathrm{f}\left(0^{+}\right)=\frac{\frac{1}{2 \sqrt{\mathrm{x}+4}}}{\frac{1}{3}(\mathrm{x}+\mathrm{c})^{-\frac{2}{3}}}=\frac{\frac{1}{2(2)}}{\frac{1}{3} \cdot \mathrm{c}^{-\frac{2}{3}}}\)
\(=\frac{3}{4} \mathrm{c}^{2 / 3}\)
Also at \(\mathrm{x}=0;\)
\(c^{1 / 3}=2 \Rightarrow c=8\)
So \(\mathrm{f}\left(0^{+}\right)=\frac{3}{4}(8)^{2 / 3}=3\)
Now, \(\mathrm{e}^{\mathrm{a}}=\mathrm{b}+1=3\)
\(\mathrm{e}^{\mathrm{a}} . \mathrm{b} . \mathrm{c}=3.2 .8=48\)