Use app×
Join Bloom Tuition
One on One Online Tuition
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
33 views
ago in Mathematics by (43.7k points)
edited ago by

Let \(f(x)=\left\{\begin{array}{lll}(1+a x)^{1 / x} & , & x<0 \\ 1+b & , & x=0 \\ \frac{(x+4)^{1 / 2}-2}{(x+c)^{1 / 3}-2} & , & x>0\end{array}\right.\) 

be continuous at x = 0. Then \(e^{a}\) bc is equal to

(1) 64

(2) 72

(3) 48

(4) 36   

Please log in or register to answer this question.

1 Answer

0 votes
ago by (44.2k points)

Correct option is: (3) 48 

\(\mathrm{f}\left(0^{-}\right)=\mathrm{e}^{\lim _\limits{\mathrm{x} \rightarrow 0} \frac{\mathrm{ax}}{\mathrm{x}}}=\mathrm{e}^{\mathrm{a}}\)

\(\mathrm{f}(0)=1+\mathrm{b}\)

\(\mathrm{f}\left(0^{+}\right)=\frac{\frac{1}{2 \sqrt{\mathrm{x}+4}}}{\frac{1}{3}(\mathrm{x}+\mathrm{c})^{-\frac{2}{3}}}=\frac{\frac{1}{2(2)}}{\frac{1}{3} \cdot \mathrm{c}^{-\frac{2}{3}}}\)

\(=\frac{3}{4} \mathrm{c}^{2 / 3}\)

Also at \(\mathrm{x}=0;\)

\(c^{1 / 3}=2 \Rightarrow c=8\)

So \(\mathrm{f}\left(0^{+}\right)=\frac{3}{4}(8)^{2 / 3}=3\)

Now, \(\mathrm{e}^{\mathrm{a}}=\mathrm{b}+1=3\)

\(\mathrm{e}^{\mathrm{a}} . \mathrm{b} . \mathrm{c}=3.2 .8=48\)     

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

...