Correct option is (2) \(\frac{4}{3}\)
\(\frac{d y}{d x}+3\left(\tan ^2 x\right) y+3 y=\sec ^2 x\)
\( \Rightarrow \frac{d y}{d x}+3 \sec ^2 x y=\sec ^2 x \)
\(\text { I.F }=e^{\int 3 \sec ^2 x d x} \)
\(=e^{3 \tan x} \)
\( y \cdot e^{\tan x}=\int e^{3 \tan x} \cdot \sec ^2 x d x+c \)
\( y \cdot e^{3 \tan x}=\frac{e^{3 \tan x}}{3}+c\)
Also \(f(0)=\frac{1}{3}+e^3\)
\( \Rightarrow\left(\frac{1}{3}+e^3\right)=\frac{1}{3}+c \)
\( \Rightarrow c=e^3 \)
\( \therefore y \cdot e^{3 \tan x}=\frac{e^{3 \tan x}}{3}+e^3\)
Put \(x=\frac{\pi}{4}\)
\(y e^3=\frac{e^3}{3}+e^3 \Rightarrow y=\frac{4}{3}\)