Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
29 views
in Mathematics by (44.6k points)

Let y = y(x) be the solution of the differential equation \(\frac{d y}{d x}+3\left(\tan ^{2} x\right) y+3 y=\sec ^{2} x, y(0)=\frac{1}{3}+e^{3}.\) Then \(y\left(\frac{\pi}{4}\right)\) is equal to

(1) \(\frac{2}{3}\)

(2) \(\frac{4}{3}\)

(3) \(\frac{4}{3}+\mathrm{e}^{3}\)

(4) \(\frac{2}{3}+\mathrm{e}^{3}\)

Please log in or register to answer this question.

1 Answer

0 votes
by (44.2k points)

Correct option is (2) \(\frac{4}{3}\) 

\(\frac{d y}{d x}+3\left(\tan ^2 x\right) y+3 y=\sec ^2 x\)

\( \Rightarrow \frac{d y}{d x}+3 \sec ^2 x y=\sec ^2 x \)

\(\text { I.F }=e^{\int 3 \sec ^2 x d x} \)

\(=e^{3 \tan x} \)

\( y \cdot e^{\tan x}=\int e^{3 \tan x} \cdot \sec ^2 x d x+c \)

\( y \cdot e^{3 \tan x}=\frac{e^{3 \tan x}}{3}+c\)

Also \(f(0)=\frac{1}{3}+e^3\)

\( \Rightarrow\left(\frac{1}{3}+e^3\right)=\frac{1}{3}+c \)

\( \Rightarrow c=e^3 \)

\( \therefore y \cdot e^{3 \tan x}=\frac{e^{3 \tan x}}{3}+e^3\)

Put \(x=\frac{\pi}{4}\)

\(y e^3=\frac{e^3}{3}+e^3 \Rightarrow y=\frac{4}{3}\)  

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

...