Correct option is: (2) 46
\(\mathrm{A}(3, \alpha, 3)\ \& \ B(-3,-7, \beta)\)
\(\overrightarrow{\mathrm{BA}}=6 \hat{\mathrm{i}}+(\alpha+7) \hat{\mathrm{j}}+(3-\beta) \hat{\mathrm{k}}\)
\(\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{q}}=\left|\begin{array}{ccc}\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\ 3 & -1 & 1 \\ -3 & 2 & 4\end{array}\right|\)
\(\frac{|\overrightarrow{\mathrm{BA}} \cdot(\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{q}})|}{|\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{q}}|}=3 \sqrt{30}\)
\(36+15(\alpha+7)-3(3-\beta)=(3 \sqrt{30})^{2}\)
\(36+15 \alpha+105-9+3 \beta=270\)
\(15 \alpha+3 \beta=138\)
\(5 \alpha+\beta=46\)