Correct option is: (2) \(\frac{\pi}{6}+\sin ^{-1} x\)
\( \sin ^{-1}\left(\frac{\sqrt{3}}{2} x+\frac{1}{2} \sqrt{1-x^{2}}\right), \frac{-1}{2}<x<\frac{1}{\sqrt{2}}\)
\(\Rightarrow \text{Let}\ \sin ^{-1}(\mathrm{x})=\theta \quad \frac{-\pi}{6}<\theta<\frac{\pi}{4}\)
\(\Rightarrow \mathrm{x}=\sin \theta,\) then
\(\Rightarrow \sin ^{-1}\left(\frac{\sqrt{3}}{2} \sin \theta+\frac{1}{2} \cos \theta\right)\)
\(\Rightarrow \sin ^{-1}\left(\sin \left(\theta+\frac{\pi}{6}\right)\right)=\theta+\frac{\pi}{6}\)
\(\Rightarrow \sin ^{-1}(\mathrm{x})+\frac{\pi}{6}\)