Correct option is: (2) \(\frac{28}{75}\)
x |
x = 0 |
x = 1 |
x = 2 |
P(x) |
\(\frac{{}^7C_2}{{}^{10}C_2}\) |
\(\frac{{}^7C_1 {}^3C_1}{{}^{10}C_2}\) |
\(\frac{{}^3C_2}{{}^{10}C_2}\) |
\(\mu=\sum \mathrm{x}_{\mathrm{i}} \mathrm{P}\left(\mathrm{x}_{\mathrm{i}}\right)=0+\frac{7}{15}+\frac{2}{15}=\frac{3}{5}\)
\(\operatorname{Variance}(\mathrm{x})=\Sigma \mathrm{P}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}-\mu\right)^{2}=\frac{28}{75}\)