Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
34 views
ago in Mathematics by (44.4k points)

Let the product of \(\omega_{1}=(8+i) \sin \theta+(7+4 i) \cos \theta\) and \(\omega_{2}=(1+8 i) \sin \theta+(4+7 \mathrm{i}) \cos \theta\) be \(\alpha+\mathrm{i} \beta,\ \mathrm{i}=\sqrt{-1}.\) Let p and q be the maximum and the minimum values of \(\alpha+\beta\) respectively.

(1) 140

(2) 130

(3) 160

(4) 150  

Please log in or register to answer this question.

1 Answer

0 votes
ago by (43.9k points)

Correct option is: (2) 130 

\(\omega_{1}=(8 \sin \theta+7 \cos \theta)+\mathrm{i}(\sin \theta+4 \cos \theta)\)

\(\omega_{2}=(\sin \theta+4 \cos \theta)+\mathrm{i}(8 \sin \theta+7 \cos \theta)\)

\(\omega_{1} \omega_{2}=8 \sin ^{2} \theta+7 \sin \theta \cos \theta+32 \sin \theta \cos \theta+\)

\(28 \cos ^{2} \theta-8 \sin ^{2} \theta-32 \sin \theta \cos \theta-7 \sin \theta \cos \theta\)

\(-28 \cos ^{2} \theta+\mathrm{i}\left(\sin ^{2} \theta+4 \sin \theta \cos \theta+4 \sin \theta \cos \theta\right.\)

\(+16 \cos ^{2} \theta+64 \sin ^{2} \theta+56 \sin \theta \cos \theta+56 \sin \theta\)

\(\left.\cos \theta+49 \cos ^{2} \theta\right)\)

\(\omega_{1} \omega_{2}=0+i\left(65 \sin ^{2} \theta+120 \sin \theta \cos \theta+65 \cos ^{2} \theta\right)\)

\(\alpha+\beta=65+60 \sin 2 q\)

\(\alpha+\left.\beta\right|_{\max }=125\)

\(\alpha+\left.\beta\right|_{\text {min }}=5\)  

= 125 + 5 = 130

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

...