Correct option is: (2) 130
\(\omega_{1}=(8 \sin \theta+7 \cos \theta)+\mathrm{i}(\sin \theta+4 \cos \theta)\)
\(\omega_{2}=(\sin \theta+4 \cos \theta)+\mathrm{i}(8 \sin \theta+7 \cos \theta)\)
\(\omega_{1} \omega_{2}=8 \sin ^{2} \theta+7 \sin \theta \cos \theta+32 \sin \theta \cos \theta+\)
\(28 \cos ^{2} \theta-8 \sin ^{2} \theta-32 \sin \theta \cos \theta-7 \sin \theta \cos \theta\)
\(-28 \cos ^{2} \theta+\mathrm{i}\left(\sin ^{2} \theta+4 \sin \theta \cos \theta+4 \sin \theta \cos \theta\right.\)
\(+16 \cos ^{2} \theta+64 \sin ^{2} \theta+56 \sin \theta \cos \theta+56 \sin \theta\)
\(\left.\cos \theta+49 \cos ^{2} \theta\right)\)
\(\omega_{1} \omega_{2}=0+i\left(65 \sin ^{2} \theta+120 \sin \theta \cos \theta+65 \cos ^{2} \theta\right)\)
\(\alpha+\beta=65+60 \sin 2 q\)
\(\alpha+\left.\beta\right|_{\max }=125\)
\(\alpha+\left.\beta\right|_{\text {min }}=5\)
= 125 + 5 = 130