Correct option is: (3) 421
\(S_n=\sum\limits_{r=1}^n \frac{4 r}{4+3 r^2+r^4} \)
\(=2 \sum\limits_{r=1}^n \frac{2 r}{\left.(r^2+2\right)^2-r^2}=2 \sum\limits_{r=1}^n \frac{\left(r^2+2+r\right)-\left(r^2+2-r\right)}{\left(r^2+2+r\right)\left(r^2+2-r\right)} \)
\(=2 \sum\limits_{r=1}^n\left(\frac{1}{r^2+2-r}-\frac{1}{r^2+2+r}\right) \)
\(S_{20}=2\left[\left(\frac{1}{2}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{8}\right)+\ldots\right] \)
\(=2\left(\frac{1}{2}-\frac{1}{20^2+2+20}\right) \)
\(=2\left(\frac{1}{2}-\frac{1}{422}\right) \)
\(=2\left(\frac{422-2}{422 \times 2}\right)=\frac{420}{422}=\frac{210}{211}=\frac{m}{n} \)
\(m+n=421\)