Answer is: 379
Rationalize
\( \Rightarrow \int \frac{\left(\sqrt{1+x^2}+x\right)^{10}}{\left(\sqrt{1+x^2}-x\right)^9} \times \frac{\left(\sqrt{1+x^2}+x\right)^9}{\left(\sqrt{1+x^2}+x\right)^9} d x \)
\(\Rightarrow \int \frac{\left(\sqrt{1+x^2}+x\right)^{19}}{1} d x
\)
Put \(\sqrt{1+\mathrm{x}^2}+\mathrm{x}=\mathrm{t}\)
\( \left(\frac{\mathrm{x}}{\sqrt{1+\mathrm{x}^2}}+1\right) \mathrm{dx}=\mathrm{dt} \)
\( \mathrm{dx}=\frac{\mathrm{dt}}{\mathrm{t}} \sqrt{1+\mathrm{x}^2}\)
Now as \(\sqrt{1+\mathrm{x}^2}+\mathrm{x}=\mathrm{t}\)
so \(\sqrt{1+\mathrm{x}^2}-\mathrm{x}=\frac{1}{\mathrm{t}}\)
\(\therefore \sqrt{1+\mathrm{x}^2}=\frac{1}{2}\left(\mathrm{t}+\frac{1}{\mathrm{t}}\right)\)
Thus \(\mathrm{I}=\int \mathrm{t}^{19} \cdot \frac{\mathrm{dt}}{\mathrm{t}} \cdot \frac{1}{2}\left(\mathrm{t}+\frac{1}{\mathrm{t}}\right)\)
\( \Rightarrow \frac{1}{2} \int\left(\mathrm{t}^{1^{19}}+\mathrm{t}^{17}\right) \mathrm{dt} \)
\( =\frac{1}{2}\left(\frac{\mathrm{t}^{20}}{20}+\frac{\mathrm{t}^{18}}{18}\right)+\mathrm{C} \)
\(=\frac{\mathrm{t}^{19}}{360}\left[9 \mathrm{t}+\frac{10}{\mathrm{t}}\right]+\mathrm{C} \)
\( =\frac{\mathrm{t}^{19}}{360}\left[9\left(\mathrm{t}+\frac{1}{\mathrm{t}}\right)+\frac{1}{\mathrm{t}}\right]+\mathrm{C} \)
\( \Rightarrow \frac{\left(\sqrt{1+\mathrm{x}^2}+\mathrm{x}\right)^{19}}{360}\left[9\left(2 \sqrt{1+\mathrm{x}^2}\right)+\left(\sqrt{1+\mathrm{x}^2}-\mathrm{x}\right)\right]+\mathrm{C} \)
\( \Rightarrow \frac{\left(\sqrt{1+\mathrm{x}^2}+\mathrm{x}\right)^{19}}{360}\left[19 \sqrt{1+\mathrm{x}^2}-\mathrm{x}\right]+\mathrm{C} \)
\( \therefore \mathrm{~m}=360, \mathrm{n}=19 \)
\(\therefore \mathrm{~m}+\mathrm{n}=379\)