Correct option is (3) \(\frac{\sqrt{2}}{3}\)
\(\frac{d y}{d x}-\left(\frac{x}{1+x^2}\right) y=\frac{\sqrt{x}}{\sqrt{1+x^2}}\)
\(\text { If }=e^{\int \frac{x}{1+x^2} d x}=e^{\frac{1}{2} \ln \left(1+x^2\right)}=\sqrt{1+x^2}\)
Solution will be \(y \sqrt{1+x^2}=\int \frac{\sqrt{x}}{\sqrt{1+x^2}} \cdot \sqrt{1+x^2} d x \)
