Correct option is (1) 3/√2
x2 - x - 2 = 0
roots are 2 & -1
⇒ \(\lim\limits_{x\to 2^+} \frac{\sqrt{1 - cos(x^2 - x-2)}}{(x-2)}\)
\(= \lim\limits_{x\to 2^+}\frac{\sqrt{2sin^2\frac{(x^2 - x - 2)}2}}{(x - 2)}\)
\(= \lim\limits_{x \to 2^+} \cfrac{\sqrt 2\sin \left(\frac{(x-2)(x +1)}2\right)}{\frac{(x-2)(x +1)}2 \times \frac 2{x + 1}}\)
\(= \lim\limits_{x \to 2^+} \sqrt 2 \times \frac{x +1}2\) \(\left(\because \lim\limits_{x\to 2^+} \frac{\sin\left(\frac{(x - 2)(x+1)}2\right)}{\frac{(x -2)(x + 1)}2} = 1\right)\)
\(= \lim\limits_{x\to 2^+} \frac {x + 1}{\sqrt 2}\)
\(= \frac {2 +1}{\sqrt 2}\)
\(= \frac 3{\sqrt 2}\)