Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
35 views
ago in Mathematics by (44.6k points)
edited ago by

Let the three sides of a triangle ABC be given by the vectors \(2 \hat{i}-\hat{j}+\hat{k}, \quad \hat{i}-3 \hat{j}-5 \hat{k}\) and \(3 \hat{i}-4 \hat{j}-4 \hat{k}.\) Let G be the centroid of the triangle ABC . Then

\(6\left(|\overrightarrow{\mathrm{AG}}|^{2}+|\overrightarrow{\mathrm{BG}}|^{2}+|\overrightarrow{\mathrm{CG}}|^{2}\right)\) is equal to _____. 

Please log in or register to answer this question.

1 Answer

0 votes
ago by (44.2k points)

Answer is: 164 

triangle ABC

By given data

\(\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{AC}}=\overrightarrow{\mathrm{CB}}\)

Let pv of \(\overrightarrow{\mathrm{A}}\) are \(\overrightarrow{\mathrm{O}}\) then

\(\overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{B}}-\overrightarrow{\mathrm{A}}\)

i.e. pv of \(\overrightarrow{\mathrm{B}}-=2 \hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}}\)

\(\overrightarrow{\mathrm{CA}}=\overrightarrow{\mathrm{A}}-\overrightarrow{\mathrm{C}}\)

i.e. pv of \(\vec{C}=-(\hat{\mathrm{i}}-3 \hat{\mathrm{j}}-5 \hat{\mathrm{k}})\)

Now pv of centroid

\((\overrightarrow{\mathrm{G}})-=\frac{\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}+\overrightarrow{\mathrm{C}}}{3}=\frac{\overrightarrow{0}+(2,-1,1)+(-1,3,5)}{3}\)

\(\overrightarrow{\mathrm{G}}=\frac{1}{3}(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+6 \hat{\mathrm{k}})\)

Now \(\overrightarrow{\mathrm{AG}}=\frac{1}{3}(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+6 \hat{\mathrm{k}})\)

\(\Rightarrow|\overrightarrow{\mathrm{AG}}|^{2}=\frac{1}{9} \times 41\)

\(\overrightarrow{\mathrm{BG}}=\left(\frac{1}{3}-2\right) \hat{\mathrm{i}}+\left(\frac{2}{3}+1\right) \hat{\mathrm{j}}+(2-1) \hat{\mathrm{k}}\)

\(\Rightarrow|\overrightarrow{\mathrm{BG}}|^{2}=\frac{59}{9}\)

\(\overrightarrow{\mathrm{CG}}=\left(\frac{1}{3}+1\right) \hat{\mathrm{i}}+\left(\frac{2}{3}-3\right) \hat{\mathrm{j}}+(2-5) \hat{\mathrm{k}}\)

\(\Rightarrow|\overrightarrow{\mathrm{CG}}|^{2}=\frac{146}{9}\)

Now

\(6\left[|\overrightarrow{\mathrm{AG}}|^{2}+|\overrightarrow{\mathrm{BG}}|^{2}+|\overrightarrow{\mathrm{CG}}|^{2}\right]=6 \times\left[\frac{41}{9}+\frac{59}{9}+\frac{146}{9}\right]\)

\(=6 \times \frac{246}{9}=164\)  

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

...