Correct option is: (3) \(\frac{1}{3}\)
\(\lim\limits _{x \rightarrow 0^{+}}\left(\frac{\tan \left(5 x^{1 / 3}\right)}{5 x^{1 / 3}}\right) \cdot\left(\frac{(3 \sqrt{x})^{2}}{\left(\tan ^{-1} 3 \sqrt{x}\right)^{2}}\right)\left(\frac{\ell\left(1+3 x^{2}\right)}{3 x^{2}}\right)\left(\frac{5 x^{4 / 3}}{5 e^{\frac{4}{3}}-1}\right) \times \frac{5 x^{1 / 3} \cdot 3 x^{2}}{5 x^{4 / 3} \cdot 9 x}\)
\(=\frac{1}{3}\)