Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
31 views
ago in Mathematics by (44.3k points)

If the shortest distance between the lines \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) and \(\frac{x}{1}=\frac{y}{\alpha}=\frac{z-5}{1}\) is \(\frac{5}{\sqrt{6}},\) then the sum of all possible values of \(\alpha\) is

(1) \(\frac{3}{2}\)

(2) \(-\frac{3}{2}\)

(3) 3

(4) -3 

Please log in or register to answer this question.

1 Answer

0 votes
ago by (44.7k points)

Correct option is: (4) -3  

shortest distance between the lines

\(L_{1}: \frac{\mathrm{x}-1}{2}=\frac{\mathrm{y}-2}{3}=\frac{\mathrm{z}-3}{4}\)

\(\mathrm{L}_{1}: \frac{\mathrm{x}}{1}=\frac{\mathrm{y}}{\alpha}=\frac{\mathrm{z}-5}{1}\)

\(\overrightarrow{\mathrm{x}}=\left|\begin{array}{lll}\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{k} \\ 2 & 3 & 4 \\ 1 & \alpha & 1\end{array}\right|=\hat{\mathrm{i}}(3-4 \alpha)-\hat{\mathrm{j}}(-2)+\hat{\mathrm{k}}(2 \alpha-3)\)  

S.D. \(=\left|\frac{\overrightarrow{\mathrm{BA}} \cdot \vec{n}}{|\overrightarrow{\mathrm{n}}|}\right|=\left|\frac{(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-2 \hat{\mathrm{k}}) \cdot \overrightarrow{\mathrm{n}}}{|\overrightarrow{\mathrm{n}}|}\right|\)

\(\Rightarrow 6(13-8 \alpha)^{2}=25\left((4 \alpha-3)^{2}+(2 \alpha-3)^{2}+16\right)\)

\(6\left(64 a^{2}-280 \alpha+169\right)=25\left(20 \alpha^{2}-36 \alpha+34\right)\)

\(\Rightarrow 116 \alpha^{2}+348 \alpha-164=0\)

\(\alpha_{1}+\alpha_{2}=\frac{-348}{116}=-3\)  

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

...