Correct option is: (4) -3

\(L_{1}: \frac{\mathrm{x}-1}{2}=\frac{\mathrm{y}-2}{3}=\frac{\mathrm{z}-3}{4}\)
\(\mathrm{L}_{1}: \frac{\mathrm{x}}{1}=\frac{\mathrm{y}}{\alpha}=\frac{\mathrm{z}-5}{1}\)
\(\overrightarrow{\mathrm{x}}=\left|\begin{array}{lll}\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{k} \\ 2 & 3 & 4 \\ 1 & \alpha & 1\end{array}\right|=\hat{\mathrm{i}}(3-4 \alpha)-\hat{\mathrm{j}}(-2)+\hat{\mathrm{k}}(2 \alpha-3)\)
S.D. \(=\left|\frac{\overrightarrow{\mathrm{BA}} \cdot \vec{n}}{|\overrightarrow{\mathrm{n}}|}\right|=\left|\frac{(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-2 \hat{\mathrm{k}}) \cdot \overrightarrow{\mathrm{n}}}{|\overrightarrow{\mathrm{n}}|}\right|\)
\(\Rightarrow 6(13-8 \alpha)^{2}=25\left((4 \alpha-3)^{2}+(2 \alpha-3)^{2}+16\right)\)
\(6\left(64 a^{2}-280 \alpha+169\right)=25\left(20 \alpha^{2}-36 \alpha+34\right)\)
\(\Rightarrow 116 \alpha^{2}+348 \alpha-164=0\)
\(\alpha_{1}+\alpha_{2}=\frac{-348}{116}=-3\)