Correct option is: (1) 21.1
\(f(x)=x^{2}+a x^{2}+b \ell n |x|+1, \quad x \neq 0\)
\(f^{\prime}(x)=3 x^{2}+2 a x+\frac{b}{x}\)
\(\mathrm{f}^{\prime}(-1)=3-2 \mathrm{a}-\mathrm{b}=0\)
\(f^{\prime}(-2)=12+4 a-\frac{b}{2}=0\)
\(\mathrm{a}=\frac{-9}{2}, \mathrm{~b}=12\)
\(f^{\prime}(x)=3 x^{2}-9 x+\frac{12}{x}=\frac{3(x+1)(x+2)^{2}}{x}\)
Max. at \(\mathrm{n}=-1\)
\(f(x)=x^{2}-\frac{9}{2} x^{2}+12\ ln |x|+1\)
\(f(-1)=-1-\frac{9}{2}+1=-\frac{9}{2}\)
\(\mathrm{M}=-4.5\)
Min. value at x = -2
\(f(-2)=-8-18+12\ ln 2+1\)
\(m=-25+12\ \ell \mathrm{n} 2=-16.6\)
\(|\mathrm{M}+\mathrm{m}|=21.1\)