Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
36 views
ago in Mathematics by (44.2k points)
edited ago by

Let x = -1 and x = 2 be the critical points of the function \(\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}+\mathrm{ax}^{2}+\mathrm{b} \log _{\mathrm{e}}|\mathrm{x}|+1, \mathrm{x} \neq 0.\) Let m and M respectively be the absolute minimum and the absolute maximum values of f in the interval \(\left[-2,-\frac{1}{2}\right].\) Then \(|\mathrm{M}+m|\) is equal to

(Take \(\log _{\mathrm{e}} 2=0.7\)):

(1) 21.1

(2) 19.8

(3) 22.1

(4) 20.9

Please log in or register to answer this question.

1 Answer

0 votes
ago by (44.6k points)
edited ago by

Correct option is: (1) 21.1  

\(f(x)=x^{2}+a x^{2}+b \ell n |x|+1, \quad x \neq 0\)

\(f^{\prime}(x)=3 x^{2}+2 a x+\frac{b}{x}\)

\(\mathrm{f}^{\prime}(-1)=3-2 \mathrm{a}-\mathrm{b}=0\)

\(f^{\prime}(-2)=12+4 a-\frac{b}{2}=0\)

\(\mathrm{a}=\frac{-9}{2}, \mathrm{~b}=12\)

\(f^{\prime}(x)=3 x^{2}-9 x+\frac{12}{x}=\frac{3(x+1)(x+2)^{2}}{x}\)

Max. at \(\mathrm{n}=-1\)

\(f(x)=x^{2}-\frac{9}{2} x^{2}+12\ ln |x|+1\)

\(f(-1)=-1-\frac{9}{2}+1=-\frac{9}{2}\)

\(\mathrm{M}=-4.5\)

Min. value at x = -2

\(f(-2)=-8-18+12\ ln 2+1\)

\(m=-25+12\ \ell \mathrm{n} 2=-16.6\)

\(|\mathrm{M}+\mathrm{m}|=21.1\) 

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

...