Correct option is: (2) \(\frac{3}{5}\)
\(\mathrm{e}_{1}^{2}=1-\frac{\mathrm{b}^{2}}{25} \quad \mathrm{e}_{2}^{2}=1-\frac{\mathrm{b}^{2}}{16}\)
\(\therefore \mathrm{e}_{1}^{2} \mathrm{e}_{2}^{2}=1\)
\(\left(1-\frac{\mathrm{b}^{2}}{25}\right)\left(1+\frac{\mathrm{b}^{2}}{16}\right)=1\)
\(\Rightarrow 2+\frac{\mathrm{b}^{2}}{16}-\frac{\mathrm{b}^{2}}{25}-\frac{\mathrm{b}^{2}}{400}=1\)
\(\Rightarrow \frac{9 \mathrm{~b}^{2}}{400}=\frac{\mathrm{b}^{4}}{400}\)
\(b^{2}=9\)
\(\frac{x^{2}}{9}+\frac{y^{2}}{25}=1 \quad \frac{x^{2}}{16}-\frac{y^{2}}{9}=0\)
\(e_{1} \sqrt{1-\frac{9}{25}} \quad e_{2}=\frac{5}{4}\)
\(e_{1}=\frac{4}{5}\)
Focii : - \((0, \pm 4) \quad( \pm 5,0)\)
ellipse passing through all four foci
\(\frac{x^{2}}{25}+\frac{y^{2}}{16}=1\)
\(e=\sqrt{1-\frac{16}{25}}=\frac{3}{5}\)