Correct option is : (4) \(\frac{1+\tan \alpha}{1-\tan \alpha}\)
\(\theta_1 = 45 +\alpha ; \ \theta _2 = 45 - \alpha\)
Time of flight, \(T = \frac{2v\sin \theta}{g}\)
\(\frac{T_1}{T_2} = \frac{\sin(45 + \alpha)}{\sin(45- \alpha)}\)
\(\frac{T_1}{T_2} =\frac{\frac{1}{\sqrt2}\cos \alpha+\frac{1}{\sqrt2} \sin \alpha}{\frac{1}{\sqrt2}\cos \alpha - \frac{1}{\sqrt 2}\sin \alpha}\)
\(\frac{T_1}{T_2} = \frac{\cos \alpha + \sin \alpha }{cos \alpha - \sin \alpha} = \frac{1+ \tan \alpha}{1- \tan \alpha}\)