Answer is : (199)
(disk) \(I_A = \frac{mR^2}{4}\) \(I = \frac{mR^2}{4}\)
(solid sphere) \(I_B = \frac{7}{5} mR^2\)
(Spherical shell) \(I_C = \frac{5}{3} mR^2\)
\(I_{PQ} = mR^2 \left[\frac{1}{4} + \frac{7}{5}+ \frac{5}{3}\right] = mR^2 \left(\frac{199}{4}\right) \times \frac{1}{15}\)
So, \(\frac{x}{15} \times\frac{mR^2}{4} = \frac{mR^2 \times 199}{4 \times 15}\)
\(\Rightarrow x = 199\)