Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
16 views
ago in Mathematics by (44.2k points)

The integral \(\int\limits_{-1}^{\frac{3}{2}}\left(\left|\pi^{2} x \sin (\pi x)\right|\right) d x\) is equal to :

(1) \(3+2 \pi\)

(2) \(4+\pi\)

(3) \(1+3 \pi\)

(4) \(2+3 \pi\)

Please log in or register to answer this question.

1 Answer

0 votes
ago by (44.6k points)

Correct option is: (3) \(1+3 \pi\)  

Let, \(\mathrm{I}=\pi^{2} \int\limits_{-1}^{3 / 2}|\mathrm{x} \sin \pi \mathrm{x}| \mathrm{dx}\)

\(=\pi^{2}\left\{\int\limits_{-1}^{1} \mathrm{x} \sin \pi \mathrm{xdx}-\int\limits_{1}^{3 / 2} \mathrm{x} \sin \pi \mathrm{xdx}\right\}\)

\(=\pi^{2}\left\{2 \int\limits_{0}^{1} \mathrm{x} \sin \pi \mathrm{xdx}-\int\limits_{-1}^{3 / 2} \mathrm{x} \sin \pi \mathrm{xdx}\right\}\)

Consider

\(\int x \sin \pi x d x\)

\(-\mathrm{x} \cdot \frac{1}{\pi} \cos \pi \mathrm{x}+\int 1 \cdot \frac{1}{\pi} \cos \pi \mathrm{xdx}\)

\(=-\frac{x}{\pi} \cos \pi x+\frac{\sin \pi x}{\pi^{2}}\)

\(I=\pi^{2}\left\{2\left(-\frac{x}{\pi} \cos \pi x+\frac{\sin \pi x}{\pi^{2}}\right)_{0}^{1}-\left(-\frac{x}{\pi} \cos \pi x+\frac{\sin \pi x}{\pi^{2}}\right)_{1}^{3 / 2}\right\}\)

\(=\pi^{2}\left\{\frac{2}{\pi}-\left(-\frac{1}{\pi^{2}}-\frac{1}{\pi}\right)\right\}\)

\(=\pi^{2}\left\{\frac{3}{\pi}+\frac{1}{\pi^{2}}\right\}\)

\(=3 \pi+1\)

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

...