We know that a charge q moving with velocity v in presence of both electric and magnetic fields experiences a force given by,


We shall consider the simple case in which electric and magnetic fields are perpendicular to each other and also perpendicular to the velocity of the particle, as shown in Fig. We have,

Thus, electric and magnetic forces are in opposite directions as shown in the figure. Suppose, we adjust the value of E and B such that magnitudes of the two forces are equal. Then, total force on the charge is zero and the charge will move in the fields undeflected.
This happens when,

This condition can be used to select charged particles of a particular velocity out of a beam containing charges moving with different speeds (irrespective of their charge and mass). The crossed E and B fields, therefore, serve as a velocity selector. Only particles with speed E/B pass undeflected through the region of crossed fields. This method was employed by J. J. Thomson in 1897 to measure the charge to mass ratio (e/m) of an electron. The principle is also employed in Mass Spectrometer – a device that separates charged particles, usually ions, according to their charge to mass ratio.