Correct option (c) \(\sqrt{gL\sin\theta.\tan\theta}\)
Explanation:

\(T \sin\theta = \frac{mv^2}R\) ......(1)
\(T\cos \theta = mg\) ......(2)
Solving equation (1) and (2)
\(\frac{mg}{\cos\theta} \sin\theta = \frac{{m\,v_{max}}^2}{Lsin\theta}\)
\({v_{max}}^2 = L\sin\theta\tan\theta\)
\(v_{max} = \sqrt{L\sin\theta\tan\theta}\)