We have f(f(f(x))) = 0
⇒ f(f(x2 – 1)) = 0
⇒ f ((x2 – 1)2 – 1) = 0
⇒ f((x4 – 2x2 + 1 – 1)) = 0
⇒ f(x4 – 2x2) = 0
⇒ (x4 – 2x2)2 – 1 = 0
⇒ (x4 – 2x2)2 = 1
⇒ (x4 – 2x2) = ± 1
When (x4 – 2x2) = – 1 ⇒ x = ± 1

From the graph it is clear that, it has two solutions Thus, the number of distinct real solutions of the given equation is 4.