Given f(1) = 0
f(2) = f(1) + 1 = 0 + 1 = 1
f(3) = f(2) + 1 = 1 + 1 = 2
f(4) = f(3) + 1 = 2 + 1 = 3, ...
Now, f(2) – f(1) = 1
f(3) – f(2) = 2
f(4) – f(3) = 3 ... ... ... ... ... ... ... ... ... f(x + 1) – f(x) = x
On addition, we get,
f(x + 1) – f(1) = 1 + 2 + 3 + ... + x
⇒ f(x + 1) = f(1) + 1 + 2 + 3 + ... + x
⇒ f(x + 1) = 0 + 1 + 2 + 3 + ... + x = x(x - 1)/2
Replacing x by x – 1, we get,
f(x) = ((x - 1)(x - 2))/2 for all x in N.