Let y = (x2 + x + 1)/(x2 - x + 1)
⇒ x2y – xy + y = x2 + x + 1
⇒ x2y – xy + y – x2 – x – 1 = 0
⇒ x2(y – 1) – x(y + 1) + (y – 1) = 0
x is real ⇒ b2 – 4ac ≥ 0
⇒ (y + 1)2 – 4(y – 1)2 ≥ 0
⇒ (y + 1)2 – (2y – 2)2 ≥ 0
⇒ (y + 1 + 2y – 2) (y + 1 – 2y + 2) ≥ 0
⇒ (3y – 1) (–y + 3) ≥ 0
⇒ –(3y – 1) (y – 3) ≥ 0
a = coeff. of y2 = –3 < 0.,But
The expression ≥ 0
⇒ y lies between 1/3 and 3
∴ The range of (x2 + x + 1)/(x2 - x + 1) is [1/3, 3]