We have

⇒ f'(x) = (2(√2 sin2x + (2 – √2)sinx – 1)
= (2sinx – 1)(√2sinx + 1)
When f(x) is increasing, so f'(x) > 0
⇒ (2 sin – 1)(√2 sinx + 1) > 0
⇒ (√2 sinx + 1) < 0, (2sinx – 1) > 0
⇒ sinx < – 1/√2 , sinx > 1/2
⇒ x ∈ (5π/4 , 7π/4) and x ∈ (π/6 , 7π/6)
⇒ x ∈ (5π/4 , 7π/4) ∪ (π/6 , 7π/6)
when f(x) is decreasing, so
⇒ f'(x) < 0
⇒ (2sinx – 1)(√2sinx + 1) < 0
⇒ –1/√2 < sinx < 1/2
⇒ x ∈ (0, π/6) ∪ (5π/6 , 5π/4 ) ∪ (7π/4 , 2π)