We have, g(x) = f(sinx) + f(cosx)
⇒ g'(x) = f'(sinx) cosx + f'(cosx)(– sinx)
⇒ g'(x) = f'(sin x) cosx – f'(cos x)sinx
⇒ g"(x) = f"(sinx) cos2x – sinxf'(sinx) + f"(cosx)sinx – f'(cosx)cosx
⇒ g" (x) < 0,
since f'(sin x) < 0, f"(sin x) > 0
and f'(cos x) > 0, f"(cosx) < 0
in the interval [ 0, π/2]
⇒ g'(x) is a decreasing function
Now, g'(π/4) = 0
If x < π/4 than g'(x) < (π/4)
⇒g'(x) > 0
⇒ g'(x) is increasing in [ 0, π/4]
If x > π/4 then g'(x) < g'(π/4)
⇒ g'(x) < 0
⇒ g(x) is decreasing in π/4 < x ≤ π/2 .