Consider the function f(x) = 1 + 2x + 3x2 + 4x3. Let s be the sum of all distinct real roots of f(x) and let t = |s|.
(i) The real number s lies in the interval
(a) ( –1/4 , 0)
(b) ( –1, – 3/4)
(c) ( – 3/4 , – 1/2)
(d) ( 0, 1/4)
(ii) The area bounded by the curve y = f(x) and the lines x = 0, y = 0 and x = t lies in the interval
(a) (3/4 , 3)
(b) (21/64 , 11/16)
(c) (9, 10) (d) ( 0, 21/64)
(iii) The function f'(x) is
(a) inc. in ( – t, 1/4) and dec. in ( – 1/4 , t)
(b) dec. in ( –t, – 1/4) and inc. in ( – 1/4 , t)
(c) inc. in (– t, t)
(d) dec. in (– t, t)