We have 2x2 – 4xy + 3y2 – 8x + 8y – 1 = 0 ...(i)
⇒ 4x – 4x(dy/dx) – 4y + 6y
dy/dx – 8 + 8(dy/dx) = 0
⇒ (8 – 4x + 6y)dy/dx = (8 + 4y – 4x)
⇒ dy/dx = (8 + 4y – 4x)/(8 – 4x + 6y)
For max or min, dy/dx = 0
⇒(8 + 4y – 4x)/(8 – 4x + 6y) = 0
⇒ (8 + 4y – 4x) = 0 ⇒ y = x – 2 ...(ii)
On solving (i) and (ii), we get,
2x2 – 4x (x – 2) + 3(x – 2)2 – 8x + 8(x – 2) = 1
⇒ x2 – 4x – 5 = 0
⇒ (x – 5)(x + 1) = 0
⇒ x = –1, 5
when x = 5, then y = 3
when x = –1, then y = –3.
Hence, the maximum value of y is 3.