We have f(x) = √(9 – x2) + √(x2 – 4)
Put x = 9cos2θ + 4 sin2θ
Then f(x) = √(5sin2θ) + √(5cos2θ)
= √5 |sinθ| + √5 |cosθ|
= √5(|sinθ| + |cosθ|)
Max value of f(x) = √5
and the min value of f(x) =√5(1/√2 + 1√2)
= √5 ×√2 = √10
Thus, Rf = [√5, √10]
So, a = 5 and b = 10
Hence, the min value of (b/a + 3)
= (10/5 + 3) = 2 + 3 = 5